アカデミック

【超初心者向け】PyTorchのチュートリアルを読み解く。<その5>

ディープラーニングを実装したい!
便利な道具があるらしいじゃんか??

 

本シリーズでは,ディープラーニングを実装する際に強力な手助けをしてくれる「PyTorch」についてです。公式チュートリアルを,初心者に向けてかみ砕きながら翻訳していこうと思います。(公式ページはこちらより

今回はNo.5で,「データの並列」編です。その他の記事は,こちらの「PyTorchの公式チュートリアルを初心者向けに読み解く」をご覧ください。

コーディングに関して未熟な部分がたくさんあると思いますので,もし何かお気づきの方は教えていただけると幸いです。また,誤りについてもご指摘していただけると非常に助かります。

GPUの使用

今までのチュートリアルでは,シングルGPUを仮定していました。しかし,PyTorchではマルチGPUを活用するためのパッケージも揃っています。以下では,どのようにしてマルチGPUを活用するかをみていきましょう。

 

必要なライブラリ等のインポート

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

今までと同じライブラリをインポートしていますね。

 

データセットの定義

input_size = 5
output_size = 2
batch_size = 30
data_size = 100

class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

最初にデータセットのパラメータを定義してから,DataLoaderという自作クラスを利用してデータセットを定義しています。

 

deviceの確認

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

使用しているデバイスをdeviceに代入しています。cudaが使用可能であれば”cuda:0″,そうでなければcpuを指定するようにできています。

 

モデルの定義

class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())

        return output

単純な全結合ネットワークを定義しています。

 

マルチGPUの使用

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  model = nn.DataParallel(model)

model.to(device)
out:
(2GPUの場合)
Let's use 2 GPUs!
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

(8GPUの場合)
 Let's use 8 GPUs!
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
出力は2GPUの場合と8GPUの場合の2通りのみ記載しました。

 

もしマルチGPUを使用しているなら,DataParallelを利用して並列計算ができます。そうでない場合は,現在使用しているデバイス上で計算するようにしています。

ABOUT ME
zuka
京都大学で機械学習を学んでいます。

COMMENT

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

※ Please enter your comments in Japanese to prevent spam.